A defined subset of adenylyl cyclases is regulated by bicarbonate ion.

نویسندگان

  • Martin J Cann
  • Arne Hammer
  • Jie Zhou
  • Tobias Kanacher
چکیده

The molecular basis by which organisms detect and respond to fluctuations in inorganic carbon is not known. The cyaB1 gene of the cyanobacterium Anabaena sp. PCC7120 codes for a multidomain protein with a C-terminal class III adenylyl cyclase catalyst that was specifically stimulated by bicarbonate ion (EC50 9.6 mm). Bicarbonate lowered substrate affinity but increased reaction velocity. A point mutation in the active site (Lys-646) reduced activity by 95% and was refractory to bicarbonate activation. We propose that Lys-646 specifically coordinates bicarbonate in the active site in conjunction with an aspartate to threonine polymorphism (Thr-721) conserved in class III adenylyl cyclases from diverse eukaryotes and prokaryotes. Using recombinant proteins we demonstrated that adenylyl cyclases that contain the active site threonine (cyaB of Stigmatella aurantiaca and Rv1319c of Mycobacterium tuberculosis) are bicarbonate-responsive, whereas adenylyl cyclases with a corresponding aspartate (Rv1264 of Mycobacterium) are bicarbonate-insensitive. Large numbers of class III adenylyl cyclases may therefore be activated by bicarbonate. This represents a novel mechanism by which diverse organisms can detect bicarbonate ion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stimulation of Mammalian G-protein-responsive Adenylyl Cyclases by Carbon Dioxide*S⃞

Carbon dioxide is fundamental to the physiology of all organisms. There is considerable interest in the precise molecular mechanisms that organisms use to directly sense CO(2). Here we demonstrate that a mammalian recombinant G-protein-activated adenylyl cyclase and the related Rv1625c adenylyl cyclase of Mycobacterium tuberculosis are specifically stimulated by CO(2). Stimulation occurred at p...

متن کامل

Bicarbonate-regulated soluble adenylyl cyclase.

Soluble adenylyl cyclase (sAC) represents a novel form of mammalian adenylyl cyclase structurally, molecularly, and biochemically distinct from the G protein-regulated, transmembrane adenylyl cyclases (tmACs). sAC possesses no transmembrane domains and is insensitive to classic modulators of tmACs, such as heterotrimeric G proteins and P site ligands. Thus, sAC defines an independently regulate...

متن کامل

Pharmacological distinction between soluble and transmembrane adenylyl cyclases.

The second messenger cAMP is involved in a number of cellular signaling pathways. In mammals, cAMP is produced by either the hormonally responsive, G protein-regulated transmembrane adenylyl cyclases (tmACs) or by the bicarbonate- and calcium-regulated soluble adenylyl cyclase (sAC). To develop tools to differentiate tmAC and sAC signaling, we determined the specificity and potency of commercia...

متن کامل

Physiological Sensing of Carbon Dioxide/Bicarbonate/pH via Cyclic Nucleotide Signaling

Carbon dioxide (CO(2)) is produced by living organisms as a byproduct of metabolism. In physiological systems, CO(2) is unequivocally linked with bicarbonate (HCO(3)(-)) and pH via a ubiquitous family of carbonic anhydrases, and numerous biological processes are dependent upon a mechanism for sensing the level of CO(2), HCO(3), and/or pH. The discovery that soluble adenylyl cyclase (sAC) is dir...

متن کامل

Established and potential physiological roles of bicarbonate-sensing soluble adenylyl cyclase (sAC) in aquatic animals.

Soluble adenylyl cyclase (sAC) is a recently recognized source of the signaling molecule cyclic AMP (cAMP) that is genetically and biochemically distinct from the classic G-protein-regulated transmembrane adenylyl cyclases (tmACs). Mammalian sAC is distributed throughout the cytoplasm and it may be present in the nucleus and inside mitochondria. sAC activity is directly stimulated by HCO3(-), a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 278 37  شماره 

صفحات  -

تاریخ انتشار 2003